
CplantTM Runtime System Support for Multi-Processor and
Heterogeneous Compute Nodes

Kevin Pedretti�, Ron Brightwell, and Joshua Williams†

June 2002

Abstract

In this paper, we describe additions and modifications to
the Computational Plant (CplantTM) system software to
support multi-processor compute nodes and to support
heterogeneous node types. We describe how these capa-
bilities have been incorporated into our scalable runtime
system and how these changes affect the interface seen
by end users and application developers. We also dis-
cuss several important operating system and networking
issues that can directly impact application performance.
We present some initial performance metrics that indi-
cate how our current implementation scales when mul-
tiple processes are running on a single node.
Keywords: commodity cluster, runtime system, multi-
processor, heterogeneous computing

1 Introduction

Clusters of commodity PC hardware connected by gigabit
network hardware running open source operating systems
have become one of the most cost effective platforms for
parallel scientific computing. Clusters consisting of thou-
sands of processors have been deployed at several sites,

�K. Pedretti and R. Brightwell are with the Scalable Computing
Systems Department, Sandia National Laboratories, PO Box 5800,
Albuquerque, NM, 87185-1110, (505)845-7397, (505)845-7442 FAX,
fktpedre,rbbrighg@sandia.gov. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract DE-AC04-
94AL85000.

†J. Williams is with Unlimited Scale, Inc., PO Box 22409,
Eagan, MN, 55122-0409, (651)554-0171, (651)554-0176 FAX,
jw@unlimitedscale.com

and many of these systems have been ranked among the
most powerful computing systems in the world.

Most of these clusters utilize multi-processor com-
pute nodes, which have the potential to deliver more
cost-effective performance than clusters based on single-
processor compute nodes. The ability to deploy a scalable
runtime system that supports multi-processor compute
nodes is an important requirement for many sites. Typ-
ical multi-processor compute node contain between two
and eight processors that share access to memory, disks,
and network interfaces. Because of the extra processing
power and economy of scale, multi-processor nodes typ-
ically have a lower price-performance ratio than single-
processor nodes.

Unlike vendor proprietary parallel systems of the past,
commodity clusters are usually composed of small build-
ing blocks of components, typically individual nodes or
racks of nodes. This characteristic allows cluster sys-
tems to be expanded more easily and more often. Un-
fortunately, such expansion usually leads to a mixture of
heterogeneous components. Even a single large order of
PC’s has been known to arrive with small variations in in-
ternal hardware and software components, such as an up-
graded version of the BIOS. For sites that wish to deploy
large-scale commodity cluster systems, heterogeneity is
inevitable.

Sandia National Laboratories has developed the Com-
putational Plant (CplantTM) system software to enable
clusters of commodity PC’s to scale to the order of 10,000
nodes. As of April 2002, the largest cluster running
CplantTM is comprised of 1,792 single-processor compute
nodes operating in a near production quality state with
more than one hundred users. Flexibility and portability

1

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

are two important features of CplantTM. It has been ported
to various processor architectures (Alpha, x86, IA-64) and
can use various interconnects (Myrinet [1], Ethernet, and
soon Quadrics [2]). The CplantTMsystem software is avail-
able as open source.

This paper presents additions to the CplantTM runtime
system that enable the use of multi-processor compute
nodes. Additionally, new features that add the ability to
use heterogeneous nodes of the same architecture will be
described (e.g., all Alpha nodes with differing amounts of
memory). The following section describes the architec-
ture of a CplantTM cluster. Section 3 describes the evo-
lution of the CplantTM runtime system and discusses some
of the factors that inhibited the use of multi-processor sys-
tems and heterogeneous systems. In Section 4 we present
our approach to add multi-processor and heterogeneous
node support to CplantTM. In Section 5, we briefly present
initial results obtained with the current implementation.
We summarize in Section 6.

2 CplantTM Architecture

In the following sections, we limit the discussion of the
CplantTM architecture to the salient features relevant to the
design for multi-processor and heterogeneous node sup-
port. A more detailed description of the architecture can
be found in [3, 4, 5].

CplantTMemploys the partition model of resource pro-
vision [6] in which nodes in the cluster assume special-
ized roles. There are three types of nodes relevant to this
discussion. Administration nodes are dedicated solely to
management tasks that act upon all of the nodes in the sys-
tem. Service nodes provide a full set of features and are
where users launch parallel jobs. Compute nodes are op-
timized for running parallel processes and typically have
a stripped-down or lightweight operating system. Current
CplantTM systems use a minimal Linux kernel, but the use
of a Sandia-developed lightweight kernel is being actively
pursued.

A CplantTM cluster is typically composed of scalable
units (SU’s). Each SU contains one administration node
to manage all of the other nodes. The rest of the nodes can
be configured as compute nodes or service nodes. Several
SU’s can be combined to form a single CplantTM system.
For example, a cluster could be composed of four SU’s

each with 32 service nodes and 32 SU’s each with 32 com-
pute nodes. With single-processor compute nodes, such a
system could run applications on up to 1024 processors.
The administration nodes are typically connected in a hi-
erarchical network so that the cluster can be administrated
as a whole from a single node at the root of the tree.

The distinction of roles and the concept of the SU are
key components that enable CplantTM systems to scale to
thousands of nodes. However, smaller CplantTM clusters
may be more ad-hoc and contain nodes that perform mul-
tiple roles. For example, Figure 1 depicts a four node
CplantTM where node 0 performs all three roles, nodes 1
and 3 operate as service and compute nodes, and node 2
functions solely as a compute node.

Node 0 Node 1

Node 3Node 2

Compute

Service

Admin

Compute

Service

Compute

Service
Compute

Switch

Figure 1: Node Roles in a Small CplantTM

Users submit jobs to a CplantTM system from a service
node via the yod command. Command line options are
used to specify information such as how many compute
nodes the application requires, which nodes to use, and
whether or not to start a debugger. yod contacts the re-
source allocator, bebopd, to request nodes for the appli-
cation that it is attempting to start. If bebopd is able to
satisfy the request, it returns a list of compute nodes to
yod. yod then contacts the Process Control Thread
(PCT) daemons that bebopd has allocated and directs
them to form a spanning tree. PCT daemons run on com-

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

pute nodes and are responsible for loading, executing, and
managing (e.g., delivering signals) application processes.
In a CplantTMwith single-processor nodes, one PCT runs
on each compute node. The spanning tree of allocated
PCT’s is used by yod to efficiently distribute the applica-
tion’s environment and executable (or executables in the
case of a multi-executable application). Once all of the
necessary data is distributed, yod directs the PCT’s to start
the application. Since the executable image is distributed
to the compute nodes by the runtime system, no shared
filesystem between service nodes and compute nodes is
required. The CplantTMruntime system has demonstrated
launching a parallel application on more than 1000 nodes
in a matter of seconds [4]. Once an application is running,
the pingd command can be used to query the system to
obtain the status of a job.

Figure 2 illustrates the interaction of the
CplantTMruntime components described above. In
this example, the bebopd node allocator runs on node
0. The yod programs running on nodes 0, 1, and 3
communicate with the bebopd to request compute nodes
(i.e., nodes running a PCT). Here, the bebopd allocated
the yod on node 0 the PCT on node 0. Similarly, the yod
on node 1 was allocated the PCT’s on nodes 2 and 3. For
this example, node 0 is the admin node, nodes 0, 1, and 3
are service nodes, and all four nodes are compute nodes.

Node 0 Node 1

Node 3Node 2

PCT

Yod

Bebopd

PCT

Yod

PCT

Yod
PCT

Figure 2: Runtime Daemons in a Small CplantTM

Each processes in a job is configured to have standard
input and standard output redirected to the yod process

that created the job. This allows users to provide in-
put to and observe output from all of the processes in
a job from a single process. For high-performance par-
allel I/O, processes can perform file I/O operations with
a Sandia-developed filesystem called ENFS, which pro-
vides a shared filesystem for parallel independent I/O.

All communication between nodes is performed via
the Portals 3.0 data movement layer [7]. Portals pro-
vides an interface and semantics sufficient to allow op-
erating system (OS) bypass and application offload, both
of which increase the potential for overlap of computa-
tion and communication. It also is designed to be highly
scalable. Each of the runtime components mentioned in
the previous section use a library layered on top of Portals
for communication. Parallel applications typically use an
MPI [8] implementation based on MPICH [9] that has
been ported to use Portals as the underlying communi-
cation mechanism.

Our production CplantTM clusters currently use a kernel-
based implementation of Portals that works with any net-
work device that Linux supports. This is accomplished via
two kernel modules, the Portals module and the RTS/CTS
module. The RTS/CTS module uses any Linux network-
ing device that provides raw packet delivery. RTS/CTS
provides packetization, network reliability, and flow con-
trol services. This module works in conjunction with a
separate kernel module that implements Portals’ seman-
tics. While this particular implementation does not al-
low for OS-bypass, we currently have several implemen-
tations in development that do.

3 Limitations

In this section we discuss the current limitations of the
CplantTM runtime system in supporting multi-processor
nodes and heterogeneous node types. While our original
intention was not to restrict the CplantTM runtime system
to only support single-processor nodes, many factors con-
tributed to this limitation as the system evolved.

3.1 Multi-Processor Compute Nodes

The CplantTM runtime system evolved from the runtime
system developed on previous large-scale distributed-
memory parallel computing platforms, such as the In-

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

tel Paragon and Intel ASCI/Red machines, which used a
Sandia-developed lightweight kernel, called Puma [10],
for compute nodes. Even though both of these systems
were composed of dual-processor compute nodes, Puma
was not originally designed to allow two application pro-
cesses to run concurrently on both processors on a node.
Puma originally supported three modes of operation [11].
In the first mode, the application processes and the ker-
nel shared a single processor while the second processor
went unused. In the second mode, the kernel runs on
the first processor and the application processes run on
the second. In the third mode, the kernel and application
processes run on the first processor and application pro-
cesses can start co-routines on the second processor. Be-
cause we tried to leverage this software as much as possi-
ble when the CplantTM project was begun, the limitations
of the lightweight kernel’s usage model with respect to
multi-processor nodes were continued1.

In early 1997 when the CplantTM project began, single-
and dual-processor PC systems were evaluated to de-
termine which system provided the best performance
for Sandia’s important applications. Since our applica-
tions are typically memory bandwidth intensive, single-
processor Alpha-based systems outperformed both single-
processor and dual-processor x86-based systems. The
memory subsystem of the Intel-based PC’s were inferior
to the Alpha systems. That trend continues to the present.
As dual-processor Alpha systems became available, there
were no apparent cost advantages to acquiring these sys-
tems for CplantTM. The cost savings of dual-processor Al-
pha systems were not realized when considering other fac-
tors, such as their decreased density. For these reasons,
all production CplantTM clusters have been composed of
single-processor Alpha-based systems, and the motivation
to develop the runtime system to support dual-processor
systems was low.

Another contributing factor was Linux’s lack of support
for multi-processor systems in 2.0 and 2.2 versions. It has
only been recently that the Linux 2.4 kernel has appropri-
ately addressed issues for multi-processor nodes. Early
attempts at using dual-processor systems with pre-2.4 ker-

1A fourth processor mode that supports running the kernel and an ap-
plication process on the first processor and another complete application
process on the second processor was developed and deployed in 1999.
This new mode, called virtual node mode, allows a single compute node
to be seen as two separate single-processor compute nodes.

nels were largely unsuccessful and the cost/performance
savings of dual-processor systems were essentially unrec-
ognized due to the instability of Linux.

3.2 Heterogeneous Compute Nodes

Even though the original CplantTMconcept involved a
strategy for growing the cluster with new hardware while
pruning off obsolete hardware, we found this very diffi-
cult to do in practice for a production computing platform.
Experience with heterogeneous compute nodes on previ-
ous systems did not encourage such systems. For exam-
ple, our large Intel Paragon system was originally deliv-
ered with computes nodes that contained 16 MB of main
memory. The system was subsequently upgraded, and
compute nodes with 32 MB of main memory were added.
Even though this information was exposed to applications
through a non-standard programming library interface, no
applications were adapted to the differences in memory
size. Application developers simply viewed the node at-
tributes by their “lowest common denominator”.

The advent of cluster computing has brought the need
for supporting heterogeneous systems to the forefront.
There are now several projects that are addressing the
ability for parallel applications to make intelligent deci-
sions regarding load-balancing on heterogeneous comput-
ing systems. One such project at Sandia is Zoltan [12].

In addition to the factors listed above, there were
many others that steered development of CplantTM toward
single-processor homogeneous systems. However, we be-
lieve that support for multi-processor nodes and heteroge-
neous systems is key to wide-spread use of the technology
we have developed.

4 Approach

In this section we discuss our approach to supporting
multi-processor nodes and heterogeneous systems within
the CplantTMruntime system. We present some design al-
ternatives and provide an in-depth description of our cho-
sen approach.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

4.1 Multi-Processor Support

Two approaches for adding multi-processor support were
identified. First, either the PCT could be extended to man-
age multiple user processes per node or the runtime sys-
tem could be modified to support multiple PCT’s on each
compute node. These approaches will be termed OPPN
(One PCT Per Node) and OPPC (One PCT Per CPU) and
are shown in Figure 3.

App App

AppApp

PCT

Compute Node

App

Compute Node

PCT

App

PCT

App

PCT

App

PCT

Figure 3: OPPN vs. OPPC

The OPPN approach has the advantage that it uses
fewer resources per node. It is more difficult to imple-
ment than OPPC because it requires significant modifi-
cations to the current PCT, since it was developed with
the assumption that it would only manage a single ap-
plication process. OPPC consumes more resources, but
requires relatively minor changes to the runtime system.
Both approaches require that the Linux kernel modules
that implement the CplantTM name space, Portals API, and
low-level RTS/CTS protocol be made re-entrant.

Sandia chose to implement the OPPN approach be-
cause it is more closely aligned approach of the
lightweight kernel. The OPPN approach is also more
amenable to Sandia’s plans of running a lightweight ker-
nel on compute nodes. The design of the lightweight ker-
nel does not allow for sufficient functionality to partition
resources (e.g. memory, processor time) between multi-
ple PCT’s efficiently. In fact, in the lightweight kernel,
the PCT is responsible for allocating all of the compute
node resources, so multiple PCT’s would be redundant.

In a non-multi-processor CplantTM, users specify to yod
the number of compute nodes needed with the -sz argu-
ment. For example, a command to launch an application
app on 32 nodes would look like ‘yod -sz 32 app’. In

an multi-processor cluster, the term “node” becomes less
clear. There is no longer a one-to-one correspondence be-
tween the number of nodes allocated and the number of
nodes in the job. With this limited job size specification,
it is up to the bebopd to decide which PCT compute nodes
get allocated and how many processes are to be run by
each PCT in the case of OPPN.

To support multi-processor compute nodes, the size
(-sz) argument to yod has been extended to option-
ally specify the number of processes per node (ppn)
or total number of processes requested (procs). The
tuple fnodes : ppn : procsg specifies how to load the
application. In a fully specified size argument (e.g.,
‘yod -sz 32:4:128 app’), nodes � ppn must equal
procs. Any valid combination of arguments is allowable.
For example, if the user wants an application to contain 32
processes but does not care how many physical nodes are
allocated, they can indicate this by ‘yod -sz ::32 app’.
Other users may want to ensure that each process in the
application gets exclusive access to the resources on a
physical node (e.g., memory bus, network interface) and
specify the number of nodes and the number of processes
to run on each node (e.g., ‘yod -sz 32:1 app’ which is
equivalent to ‘yod -sz 32 app’ for backward compati-
bility).

To support multi-processor compute node, the runtime
system restricts compute nodes to running processes from
a single application at any given time. Sharing processors
on a compute node between multiple parallel jobs violates
our space-sharing philosophy of managing a system, and
would require significant changes to components outside
the runtime system, such as the batch scheduler and job
logging system.

4.2 Heterogeneous Support

The need has arisen at Sandia to support a cluster with
compute nodes that have differing amounts of memory.
The current approach is to split a physical cluster that con-
tains heterogeneous nodes into virtual machines where
each virtual machine contains a set of homogeneously
configured nodes. Each virtual machine looks like an in-
dependent machine, and it is not possible to run a job that
spans two virtual machines.

To avoid the need to artificially partition heterogeneous
nodes, the concept of node attributes has been introduced.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Abstract attributes and attribute values can be defined by
an administrator and assigned to compute nodes. Fig-
ure 4 gives examples of two new CplantTM configuration
files, cplant-attribs and cplant-nodespec, that ac-
complish this. The cplant-attrib file defines the at-
tributes recognized by the system. Each attribute and
value text string are purely abstract and are converted
to integer ids for use internally by the CplantTM runtime
system. In the figure, three attributes are defined: CPU,
MEM, and NIC. The second column of each attribute def-
inition specifies the valid operations for the attribute. The
operations are used by user’s to specify resource require-
ments when submitting jobs.

Following the operations, is a list of values for the at-
tributes. The cplant-nodespec file is used to assign
attribute-value pairs to compute nodes. The first column
specifies the node id. The second column specifies the
maximum number of processes to run on the correspond-
ing compute node (node width). Following this is a list
of attribute value pairs. Every attribute must be defined
for each node listed in the cplant-nodespec file. Nodes
not explicitly listed will obtain a default node width of
one and the first value defined for each attribute in the
cplant-attrib file.

cplant-attribs:

CPU =,>=,<= 500MHZ 1GHZ 2GHZ

MEM =,>=,<= 256MB 512MB 2GB

NIC = FAST SLOW

cplant-nodespec:

0 4 CPU=500MHZ, MEM=512MB, NIC=SLOW

1 4 CPU=1GHZ, MEM=512MB, NIC=SLOW

2 4 CPU=2GHZ, MEM=1GB, NIC=FAST

10 2 CPU=2GHZ, MEM=2GB, NIC=FAST

Figure 4: Heterogeneous Node Configuration Files

A new argument has been added to the yod command
line to allow users to specify the type of nodes on which to
run their application. It is instructive to use an example to
illustrate. Consider a CplantTM with the attributes defined
by the configuration files in Figure 4. If a user wanted to
launch an application app on two 512MB, slow network
nodes, and have 2 processes per node, they could specify

this by:

yod -sz 2:2 -na "MEM=512MB, NI=SLOW" app

In this case, the only nodes meeting this criteria are
nodes 0 and 1. The Bebopd would thus be required to
assign these two nodes. The “>=” and “<=” operators
provide more flexibility to users when specifying require-
ments. If the requirement is compute nodes with at least
512 megabytes instead of exactly 512 megabytes and the
speed of NIC isn’t important, the following could be spec-
ified:

yod -sz 2:2 -na "MEM>=512MB" app

In this case, all four nodes are candidates and the
bebopd has considerably more flexibility. With this
scheme, it is in the user’s best interest to specify job re-
quirements as loosely as possible. Very explicit resource
requests will likely take longer to fulfill and may signifi-
cantly degrade the performance of the runtime system.

5 Initial Implementation and Re-
sults

This section describes the current state and initial results
of Sandia’s multi-processor implementation. As of June
2002, the implementation appears to be stable based on
limited testing on a 4-node cluster. All of the modifica-
tions necessary to the runtime programs (i.e., bebopd,
yod, PCT, pingd) have been completed and verified to
work properly when running multiple processes per node.
The multi-processor modifications to the CplantTM mod-
ules were initially problematic. We believe we have iden-
tified and resolved the race conditions that were causing
these problems. We hope to soon begin more extensive
testing on a 128-node cluster composed of dual Pentium
IV nodes.

The additions described in this paper have been devel-
oped and tested on an Itanium [13] cluster at the Univer-
sity of New Mexico. The cluster consists of four Hewlett
Packard rx4610 servers, each with four 733 MHZ pro-
cessors and four gigabytes of memory. It is not the pur-
pose of this paper to evaluate the performance of multi-
processor systems in a general manner. However, we have
seen some interesting results.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

We’ve implemented intra-node messages via shared
memory. Initial benchmarks show that MPI latency for
zero-length intra-node messages over 100Mb/s Ethernet
is 30 µsec and inter-node messages is 101 µsec. With the
shared memory message path turned off (i.e., messages go
through the networking system), latency rises to 72 µsec
for intra-node messages. For applications where only la-
tency is critical, this shows a clear benefit for taking the
shared memory approach. Once our Myrinet drivers are
ported to IA-64, we expect to get much better latency re-
sults.

Locking has been implemented so that only one pro-
cess is allowed to use the CplantTM modules at any given
time. A Linux spin-lock is obtained at every entry point
into the modules and released when the critical section is
over. When entering the CplantTM modules from a user-
context, interrupts on the entering CPU are disabled. This
avoids deadlock with the RTS/CTS receive interrupt han-
dler, which acquires the global spin-lock asynchronously.
While this approach was identified as the most rapid
way to get the modules working on multi-processor ma-
chines, finer-grained locking would provide opportuni-
ties for pipelining send processing and this greater per-
formance. Figure 5 compares the performance the NAS
NPB [14] LU benchmark running under CplantTM and run-
ning under a native version of MPICH 1.2.3. Single pro-
cess performance between the two is similar. For the
case where four processes run on the same node, native
MPICH is considerably faster than CplantTM. The gap
narrows when four processes are run with two processes
per node. This seems to indicate that there is contention
among the processes for access to the CplantTM network-
ing modules caused by the global spin-lock. Finer-grained
locking, where multiple processes can be allowed to use
the CplantTM networking layer simultaneously, should al-
leviate this problem.

Cplant

Total

Native MPICH

Total

Cplant

Per Proc

Native MPICH

Per Proc

1 Process 63.4 65.6 N/A N/A

4 Procs, Same Node 195.11 244.9 48.8 61.2

4 Procs, Two per Node 215 230.3 53.75 57.6

Figure 5: CplantTM vs. Native MPICH for LU NBP
Benchmark (in Mop/s)

In the future, we will be comparing the performance
of the OPPN approach to the OPPC approach. Metrics

such as job load time, compute node memory usage, and
compute node processor overhead will be examined.

6 Conclusion

In this paper, we have briefly described the CplantTM

system software and additions to it for multi-processor
and heterogeneous compute node support. Changes to
the user interface for submitting jobs has been described
along with examples. Preliminary results show good la-
tency for intra-node messages. However, we have identi-
fied possible contention for the CplantTM networking layer
when there are are multiple processes on the same node
communicating due to our simple locking implementa-
tion. This should be remedied when finer-grained locking
is in place.

References

[1] N. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. Su,
“Myrinet-a gigabit-per-second local-area network,”
IEEE Micro, vol. 15, no. 1, pp. 29–36, February
1995.

[2] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg, “The Quadrics Network: High-Performance
Clustering Technology,” IEEE Micro, vol. 22, no. 1,
pp. 46–57, January 2002.

[3] R. B. Brightwell, L. A. Fisk, D. S. Greenberg, T. B.
Hudson, M. J. Levenhagen, A. B. Maccabe, and
R. E. Riesen, “Massively Parallel Computing Us-
ing Commodity Components,” Parallel Computing,
vol. 26, no. 2-3, pp. 243–266, February 2000.

[4] R. B. Brightwell and L. A. Fisk, “Scalable Parallel
Application Launch on CplantTM,” in Proceedings of
the SC2001 Conference on High Performance Net-
working and Computing, November 2001.

[5] R. B. Brightwell and S. J. Plimpton, “Scalability and
Performance of Two Large Linux Clusters,” Journal
of Parallel and Distributed Computing - Special Is-
sue on Cluster and Network-based Computing, vol.
61, no. 11, pp. 1546–1569, November 2001.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

[6] D. S. Greenberg, R. B. Brightwell, L. A. Fisk, A. B.
Maccabe, and R. E. Riesen, “A System Software
Architecture for High-End Computing,” in Proceed-
ings of the SC’97 Conference on High-Performance
Networking and Computing, November 1997.

[7] R. Brightwell, W. Lawry, A. B. Maccabe, and
R. Riesen, “Portals 3.0: Protocol Building Blocks
for Low Overhead Communication,” in Proceedings
of the 2002 Workshop on Communication Architec-
ture for Clusters, April 2002.

[8] Message Passing Interface Forum, “MPI: A
Message-Passing Interface Standard,” The Interna-
tional Journal of Supercomputer Applications and
High Performance Computing, vol. 8, 1994.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
High-Performance, Portable Implementation of the
MPI Message Passing Interface Standard,” Parallel
Computing, vol. 22, no. 6, pp. 789–828, September
1996.

[10] P. L. Shuler, C. Jong, R. E. Riesen, D. van Dresser,
A. B. Maccabe, L. A. Fisk, and T. M. Stallcup,
“The Puma operating system for massively parallel
computers,” in Proceedings of the 1995 Intel Su-
percomputer User’s Group Conference. Intel Super-
computer User’s Group, 1995.

[11] A. B. Maccabe, R. E. Riesen, and D. W. van Dresser,
“Dynamic Processor Modes in Puma,” Bulletin of
the Technical Committee on Operating Systems and
Application Environments (TCOS), vol. 8, no. 2, pp.
4–12, 1996.

[12] K. Devine, E. Boman, R. Humphrey, B. Hendrick-
son, and C. Vaughan, “Zoltan Data Management
Service for Parallel Dynamic Applications,” Com-
puting in Science and Engineering, vol. 4, no. 2,
March/April 2002.

[13] B. Greer, J. Harrison, G. Henry, W. Li, and P. Tang,
“Scientific Computing on the Itanium Processor,”
in Proceedings of the SC2001 Conference on High
Performance Networking and Computing, Novem-
ber 2001.

[14] D. H. Bailey et al., “The NAS Parallel Bench-
marks,” International Journal of Supercomputer Ap-
plications, vol. 5, no. 3, pp. 63–73, 1991.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

